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The n-point statistics of singularity strength variables for multiplicative branching processes is calculated
from an analytic expression of the corresponding multivariate generating function. The key ingredient is a
branching generating function, which can be understood as a natural generalization of the multifractal mass
exponents. Various random multiplicative cascade processes pertaining to fully developed turbulence are
discussed[S1063-651X98)09307-9

PACS numbeps): 47.27.Eq, 02.50.Sk, 05.46j

I. INTRODUCTION multiplicative branching processes.
The ultimate goal for any analysis, of course, would be a

Many complex processes occurring in nature are believedharacterization of the multivariate statistics gained from a
to be organized in a self-similar way: turbulence, large-scalg@hysical process to a degree of completeness that would per-
structure formation in the universe, high-energetic multipar-mit precise reconstruction of the “branching rule” that gov-
ticle dynamics, and diffusion limited aggregation are but aerns each step of the self-similar process. As far as theory is
few examples showing scaling over a wide range. concerned, this ultimate goal would be achieved with the

A convenient tool to characterize the spatial configuraspecification of a multivariate generating function whose
tions of these processes is the multifractal formalj9m3],  n-fold derivatives would precisely reproduce the correspond-
which analyses the one-point statistics of singularityjng experimentally measurestvariate cumulants.
strengths under the assumption of multiple local scale invari- “cjearly, finding this real-life generating function remains
ance. Typically, scale invariance is a consequence of SOMgayond present-day capabilities, for both theoretical and ex-
hierarchical organization of the underlying process. SInC‘(3)erimental reasons. It is possible, though, to make progress
this Process occurs in space, Its charellcterllzatlon In terms Bwards the ideal by inventing simple branching models
multifractals can be expected also to yield information aboubvhose generating functions can be calculated. An approach

spatial correlation functions. to calculate thaen-point spatial correlations to arbitrary order

Multivariate correlations, on the other hand, have long .~ . }
been known to contaitat least in principlecomplete infor- within some of these models was presented in R&6,11:

mation of the underlying random process. Moments and e _here_, the multivariate gen_erating function of the spatial cor-
pecially cumulants are capable, in their multivariate form, off€lations was constructed iteratively from a backward evolu-
providing this information by means of well-tested statisticalion equation, leading to a recursive derivation of spatial cor-
procedures. As in the case of multifractals, cumulants cafelations. An important further step has been the recent
detect and characterize scale invariance, but unlike théiscovery of alarge class of analytic solutions for generating
former do not depend on its presence. functions of self-similar multiplicative branching processes

The existence of these two sets of tools naturally leads t612].
the question of how they are interrelated: given a self-similar In this paper, we expand on the latter discovery and at-
process, does the multifractal characterization completely dgempt to cast further light on said relationship between mul-
termine the spatial correlation functions and vice versa, otifractals and correlations. After a brief explanation of the
does one provide more information than the other? mechanics of multiplicative branching processes in Sec. ll,

Some attempts have been made to elucidate the relatiomve review in Sec. Il the formalism of multivariate correla-
ship between multifractals and correlation functions: two-tions and derive the above-mentioned analytic solutions for
point statistics of multifractal measures have been discussatie branching generating functions. While singularity
in Refs.[4,5] and applied to turbulence if6]. It is to be  strength variables are already treated in Sec. Ill, the relation-
expected, though, that only the fullpoint statistics of sin- ship between spatial correlations and multifractals is ex-
gularity strengths would provide the equivalent informationplored more fully in Sec. 1V, where we also show how the
contained in the spatial correlation functions of all orders. vaunted splitting functioribranching rule”) can be recon-

It is known that different self-similar processes can leadstructed via a two-dimensional Laplace transform. The ques-
to identical multifractal exponenf§—9]. This can be under- tion of reconstructing this splitting function from data is also
stood as a hint that the multifractal characterization is indeetbriefly discussed. Four examples of branching processes,
incomplete and that the spatial correlation functions maytreated in Sec. V, drive home the message that multifractals
contain more information about the underlying process. Weontain less information than the spatial correlations. We dis-
shall show that this is indeed the case for several examples ofiss our results in more general terms in Sec. VI.
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Il. MULTIPLICATIVE BRANCHING PROCESSES

e
n

Random multiplicative branching processes, sometimes
also called weight-curdling models or simply cascade mod-
els, can be constructed for any number of branches per split-
ting. For simplicity, we concentrate on binary processes;
generalizations are straightforward.

The branching rule governing a binary cascade is de-
scribed as follows: a starting energy densiy’=1, uni-
formly distributed on the unit interval, is split up into two
daughter densitieg{)=q,e® and eV=q,¢© living on
adjacent subintervals of length 2. The random weightg
andq,, often also called multipliers or splitting parameters,
are drawn from a joint probability densitgor “splitting
function”) p(gq,q4). In the next generation, each of the two
daughter energy densities is itself split up by the same
branching rule into two granddaughters distributed uniformly
over adjacent subintervals of Iength*? Generally, energy
densities of thgth generatione(), are characterized by the
binary indexr= (k1K - - - K;), with eachk taking on possible

P(qp4;)
=3
-

e
Y

values 0 or 1. Successive repetition of this prescription for )

eache of the jth generation yields, at the next branching, FIG. 1. Solitting funci ( ) of (@ th del with
j+1 . (G+1) _ 4G+ (D) . 1. Splitting functionsp(qg,qs1) of (a) the p model wi

2(j+1) ene:jg+yl) de(jr;SItles 6!‘1""‘10 qkl'."'f'oekl"'kj and B=0.4, (b) the a model with 8=0.4, (c) the energy-conserving

€k, k1= kg kg1 €k kg with the multipliers drawn from  SrST cascade model with3=3.2, and (d) the energy-

a splitting funCtionp(q(kj;-l-)ij'q(kj:-l-)kjl)' which usually(al- ~ nonconserving SRST cascade model with 3.2.

though not necessarijlys identical withp(qg,q4). The pro-

cess is completed aftdrcascade steps. 1 r28)\° o1
When the splitting functiop(qy,q;) does not depend on P(Qo.d1)= 226-1 ()2 [90(2—00)]

the generatior) or branch locatiork, - - -k;, the above pre-

scription gives rise to a self-similar multiplicative branching x[q.(2—qy) )P L. (4)

process, wholly characterized by the choice of splitting func- N ) o

tion p. We list four examples for later use. The choice ~ These four splitting functions are shown in Fig. 1.

1
P(Qo,q1) = 5{5[(3]0_(1"'3)] Ill. SPATIAL CORRELATIONS

A. Possible variables
+[ao— (1= B)]116(dot a1~ 2) oy For branching processes, the success in extracting useful
leads to the binomial multiplicative process, also known adnformation or presenting a clear picture depends strongly on

the p model[often the equivalent parametgr=(1+ 8)/2 is the choice of variable. In Refg10,11,14, forward and back-
used [8]. The delta functions(qo+q,—2) ensures that this ward evolution equations for a multivariate generating func-
process conserves energy at ever; branching. tion were employed to calculate the correlations directly in

- . . g J J
The splitting function for the nonenergy conserving coun-terms of the energy densme(sa‘xf' . 'ffcn)>- In the context of

terpart of thep model, thea model[9], is given by multifractals[1], on the other hand, another set of variables,
L the so-called singularity strengtiad? , are in use. The defi-
p(do.d1) = ZH {8lax—(1+B)]+da—(1-p)]}. nition of these strengths, (2)65‘3):(24)1153), means that
k=0 @ they are related to the energy density variatg by
For the energy dissipat_ion process in fully developed turbu- aﬁf)zl— In eﬁf), (5)
lence, the parametrization JIn2
1T(28) qo>ﬁl(ql)ﬁ 15 P so that correlationgal,)---a{))) between the singularity
P(do.d1) =5 r(B)2\ 2 2 (Go+ 61 ~2) strengthsa?) are intimately related to corresponding corre-
lations ((In €Yy - - - (In€Y)) between the logarithms of the
1 T(28) " "

itieg®
= ———[qo(2—q0) 1~ 18(qp+q1—2) energy densities,;”’ . _ _
22671 1(B)? Aot Ao o™ We have shown previous[j12] that correlations between
the Ine lead to a particularly transparent structure for multi-
(3) o ! ) X .
plicative branching processes. Starting with correlations of
with 8=3.2 has been directly deduced from experimentghe logarithms of energy densities, we show below how this
[13]. The corresponding splitting function not conserving en-transparent structure arises before translating these results
ergy is given by into the language of multifractals.
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B. Correlations and generating functions CKl,KZ,K3,K4:<InEK1InEK2|n€K3In€K4>C

We consider the spatial correlations
:<|n6K1|n6K2|n€K3|n€K4>

Py, s, =(IN€-Ine) (6)

- Ine,. Ine,. Ine,. ){Ine
of order n between the variables &’. The bracket( ) @ (IneInelne.e)(Ine.q,)
indicates the averaging over all possible configurations. Mo-
mentsp,. .. . are conveniently calculated from the multi- - % (|n€K1|n€K2><|nEK3|n6K4>

variate generating function

1

Z[)\(J)]:<ex ) > O)\f(i)__kjlnefd),_kj)> 7)

+2% (Ine,. Ine, )(Ine, )(Ine,.,)

—6(Ine, )(Ine,. )(Ine, . )(In€,), (14
by taking appropriate derivatives with respect to the conju-

; ).
gate variables. ;" with brackets } indicating summation over permutations of

MZIND] indices.
Pr, ™ )0 ®
K1 Kn

A=0 C. Construction of the cumulant generating function
(first approach)

The corresponding multivariate cumulant generating o , i
function The derivation of the cumulant generating function de-

pends crucially on a rearrangement of terms in the sum
KIND]=InZ[\ D] @ Ty, M kN entering the generating function in
Eq. (7). The trick lies in recognizing that the cascade pre-

yields the cumulant correlation densities in the same way Vi%cription of Sec. Il implies that the energy density in b

KA generation is the product of all the splitting parameters in its
= - - =(In €D ln E(J>> . ancestry,
Ky, onny K &)\(J) . (?)\U) Ky Ky c»
x fn I\@=0 D=e?  =q¥q? ---q (15)
(10) K ky- kg~ Yk, YUk k, Ky ko

here, we have introduced the index(for “cumulant”) on
the last bracket to distinguish E¢LO) from the expression
(6) for the ordinary correlation densities. The lowest four

so that its logarithm is additive in the multipliers’ logarithms,

orders of cumulant correlation densities are ) ) 0
|n€k14..k‘]= Zl In qkl"'kj . (16)
C, = (€, )o=(INe,. ), (11) =
Cu i, = (€ IN€ )= (In€, IN€, ) = (Ine, )(INne, ), Inserting this into the sum in the exponential of the generat-

(12) ing function in Eq.(7) and defining

Cr. 1 1e,=(Ine,. Ine, In€,. )¢
114,83 1 ke Cag 0o 3
A(k])...k.z E Aﬁl)...kjkﬁl...ky (17)
=(Ine, In€, In€, ) — 2, (Ine, Ine, )(Ine,.)

{3}
we find, after rearrangement and judicious regrouping of
+2<|n6K1><|n6K2><|n6K3>, (13) termS, that

- (i) (j) (i) (i)
12'1 « .Z,kj,l (Mg kg0 i k0T N kN A1) (18)

This can now be utilized to rewrite the configuration averd@ée™)) of any functionO in terms of the splitting
parameters as follows. We start with the definition

<O(e<‘])))=f d(ine” ) ---d(Ine” Hp(Ined) o, ... ,Ine )O(e?), (19
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wherep(Ine) ,, .. .,Iné" ,) is the joint probability of finding a given logarithmic energy densitgth, in bin (0- - -0), a
given |mg~’,>,,1 in the next bin, etc. Since each energy densiﬂ) is completely determined by it§ ancestral splitting
parameters, the multivariate probability densh)ﬁlneg),,o, e ,Ine(l"_)__l) can be constructed from the splitting function

P(do,q,) by using Eq.(16):

J 1
J J _ j j j j
p(mfg)»)..o: s 'lneg.»)~~l)_ (H H dqgl)"'kjflo dq(kll)"'kjfll p(qﬂjl)"'kj1O'q|((]1)"'kj11))

j=1 kg, ... kj—1=0
1 J
(J) _ (i
X . ..H,kJ:o 6( Ine’. ., 121 In Qk1-~-kj) : (20)
Inserting Eqs(18), (19), and(20) into Eq. (9), we find that the cumulant generating function becomes
1 1
KIN o, .. A 1=In f IT  dane ) |pned o, ..., Ine? _1)exp< > A Ined )
1oeeos ky=0 J ' ky=0 J
J 1
_ (1) (i)
_121 Ky, ..%71=0 Q[)\kl‘"kiflo')\kl"'kjfll]’ @D
where
Q[7\0y)\1]:|n( f dgo dag; P(QO,%)GXK)\OmQO+>\1|HQ1)):m(eXF()\o'” dotA1InQy)) (22

is the local branching generating functidmg.f). Equations ting variables of every branching must be independent of
(21) and (22) represent the long-sought analytic expressiorthose of the other branchings and generations.

for multiplicative cascades: they show that the cumulant gen- . ) .

erating function of the entire cascade can be written as the D. Construction of the cumulant generating function

sum of all branching generating functio@s one for every (second approach

branching. In most cases, the twofold integré?®) can be The cumulant generating function can also be constructed
solved analytically or parametrically to yield a complete anafrom a forward evolution equation. In Rdfl4], the forward
lytic solution for K and thereby for all cumulants. evolution equation for the generating function was derived in

The scope and limitations of the soluti¢21) are as fol-  terms of energy densitieé('l),,,kj . In terms of the Ira(kjl),,‘kj,

lows. Clearly, the generating function in terms Ot lis ap-  the cumulant generating function aftgr cascade steps,
plicable to any functional form of the splitting function or K ()[\ ()], can be expressed in terms Kfi~D[A0-D] as
b.g.f. It does not depend on the number of branches eithefy|ows. At each of the o1 independent branchings, Eq.

trivariate or even higher-variate splitting functions can be(16) relates the daughter energy densities to their parent by
implemented. Due to the additive nature of the b.g.f.’s, the

splitting functions can differ from generation to generation Ine) . =Inel Y +Ingl’ ., (k;=01. (23
and even from branch to branch. The orténd important vy vt vy
precondition for the applicability of Eq21) is that the split-  In analogy to Eq(18),

1 1
() () — () (1) (1) ()
ex;{ ) Ek . )\kl»--kjlnekln-kj ’ l_kl Y exq)\kl-~-kjflolnekl--~kj710+)\k1--~kj711|n6k1~--kj711)
1 1Ko

1
— (1) (1) (j—1) (1) (1)
o ”1'1]71:0 eXF{(Ml..-kj,loJﬂ\kr»-kj,ll)mfkl-.»kj,1+7\k14.-kj,lokal.»-kj,lo
+A{ Inqy ] (24)
Ky kg1 Ok kg1

and assigning, as in EQL7),

M otk

| N @5

i-1 i-1

we arrive at
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1

K(i)[)\(i)]:K(J’*l)[)\(ifl)]_,_kl‘ ”%71:0 |n< f dqul)---kj,lodqﬁll)--~kj,1lp(q(kjl)---kj,lo'qul)-~-kj,ll)

X eXF(Ale). g0l q(kjf. k0t )\ﬁjl). AL Qﬁjﬁ SN
1
:K(J*l)[)\(lfl)]_,_ 2 . Q[)\(kjl)-~-kj,10')‘l(<11)-~-kj,11]' (26)

1 ""kj*1=
%O)

This forward evolution equation can be iterated frgmJ

down to j=0, where we arrive atKU=O\()] CKl,K2=(J—d2)(
=In(ZO\©))=0; the outcome of this iteration is identical to

the solution(21). Similarly, a backward evolution equation

9*Q[No.\1]

2
0

2
for the cumulant generating functions can also be used to +(1- 8y O)(a QlAo.A4] (31)
achieve identical results; we leave this as an exercise to the z NodN1 |, o)’
reader.

while with the generalizatioi28), the third-order cumulant

E. Cumulant correlation densities density becomes
AO)

Having found an analytic expression of the multivariate
generating functiotiK[ A7, it is now straightforward to cal- Coy ey oacs = (J—ds)(
culate the cumulant correlation densitidd)—(14) between
the Ine) variables via Eq(10). In order to give compact

Q[N 1]
NG

expressions, we define an ultrametric distance between bins. +(1- 8y o) 9°Q[Ng,\4] . (32
Assume the two bins are together for the firstteps of the 3 ,9)\3(9)\1 ‘o

binary cascade before splitting at thgeH1)th generation, a

iy =(ky - Kjkjp1---Kg) and  sp=(ky - -kjki, 1K), In the case of fourth order, two cases have to be distin-
wherek;=k{ for all 1<i<j andkj,,#kj,;. Then the ul- guished, depending on whether the first splitting of the four
trametric distance between them is bins s, ... ,k, goes into three and one, say; ke, x| rc;)

with ds( K,k ,K3)<d, andn,;=3n,=1, or into two and
two, say (e, £, rezrcs) With do(sey, #6,) <da, do(ses, 1) <y,
andn;=2n,=2:

AO)

7*Q[Ng.\1]
n n
PEONG

d2=D(ky,K2)=J—]. 27

For n bins, the generalized ultrametric distance is
7*Q[Ng.\ ]

d,= max D(k,k;). (28 CK1'K2'K3'K4=(J—d4)( 2
NG

1<i<j<n

In the following, we assume that the same functional form
for the b.g.f. is used at all branchings. We also assume the (1= 64,0
splitting functionp(qgg,q;) to be symmetric under exchange
of the splitting parameter$)(dq,d:)=p(d:,9p); the four
splitting functions given in Eqs(1)—(4) fall into this cat- Even under the stated assumptions, the expressid)s-
egory. In consequence, the branching generating functiof33) are still very general for self-similar binary multiplica-

). (33
A=0

Q[ Mo, M 1]1=Q[A1,\o] is also symmetric, so that also tive cascade models. The one and only input is the splitting
function p(qq,q;) determining the branching generating
JMFN2Q0N g\ IMHN2Q0 N g N function Q[ \g,\1]. The cumulant correlation densities for
QiAo l]‘ = QAo 1]‘ (29 the splitting functiong1)—(4) will be discussed in more de-

tail in Sec. V.

It is clear from Eqgs(30)—(33) that the derivatives of the
This relation results in compact expressions for the cumularieranching generating function completely fix the spatial cu-
correlation densitie£K1 _____ . Inserting Eq.(21) into Eq. mul_ant' correlation densities. U;ing the definiticm_Z) these '
(10) and taking into account Ed17), the cumulant correla- derivatives can be expressed in terms of generic branching

n nNo Ny n
agaN | g |

tion density of first order is found to be moments:
n{+n
dQ[Ng 1] 9" "2Q[ N g, A 4] —(( n n
— gl =071 _— =((Ingp)"(Ingy)"?).. (39
Cu, J( o || (30 A | ((Ingo d1)"2)c

For second order we get, with E7), In the lowest three orders, they read explicitly
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(Ingo)c=(Inqy), to thef(a) spectrum1]. The latter is related by a Legendre
transformation to a sequence of mass exponepiy, which
((INge)2)c=((INg)?) —(Inqy)?, are defined by the moment scaling behavior of bin energies
EQ
1K
((Ingo)(Inay))c=((INdo)(ING1)) —(INqo){INqy), .
) — (J) v
(I do)*)e=((Indo)) — 3((InGe) *){In o)+ 2(IN ip)°, M) <k1,.2,k,.o (B 1) >
((Inge)*(Ingy))e=((INdo)*(Indy)) 1 e\’
—2((Inqgo)(Ingy))}(Inqo) Ky, .o k=0 | 2]
—((Ingo)*){Inqy) +2(Inqe)*(Inqy). =271~ (39)
(35) In order to avoid confusion we have writtefiy) instead of
F. Link to singularity strength variables the more familiar notatior(q). Since the bin energies are
0
We have defined the cumulant correlation densitiegelated to the singularity strengths E;S")—(Z 1)"J these
Cup. ..., =(In€Y- - -IneY). in terms of the Iy’ variables. ~moments are to be understood as scale-dependent measures
With the help of Eq(5), they can be transformed into cumu- for the one-point statistics of t_he singularity strengths.
lant correlation densitie® _<a(J) (J)> between We first derive the expression for the exponerits) for
..... K C

the special case of a symmetric splitting functiofq,,q;)
=p(q,.90) of a binary multiplicative cascade process that
conserves energyNote that for energy nonconserving split-
1 ting functions, as for example those given in E@3.and(4),
arx1=1Inl ex )\ ) the multifractal exponents cannot be defined unamb_lgl_Joust;
] < p( . E kJakl kK see Ref[11].] Then we can use Eq15) and the statistical

the singularity strength variables(,f). We find for the cor-
responding generating function

1 independence of splitting parameters to deduce
(J) 1 v v v v\ j
In< exp{ . .Z’kao )\kl...kJ <(ef<11)~~~kj)y>:<le><qklk2>' ) '<qk1~~kj>:<%>'- (40)
1 ) Insertion into Eq.(39) yields
1_J|n2|n€kl kJ )
<%> In{dg)
1 ( 1) T(V) ov— 1 :_( - ) In2 - (41)
= (J) A
kl..Z,J_ Moo tK S| (38

For aqy/q,-asymmetric, energy-conserving splitting func-
Taking derivatives, the relations between the cumulant derion We have to replace the sum appearing in B9) by
sities are found to be, for first order,

1 1 L2 0=l @y, @2

..... - 271
515 (INe)e=1-37-5Cy, (37 vy

— /A D\ —1_
leg)e=1 Jin2

which gives rise to
and, forn=2,

, S ( )_ A {Go*ay ) - In(do) + (A1)
Cil ..... Kn_<“( )L gl )> (v —2” vt
:<JI ) (lne Ine(J)>C
n2 B. Relationship betweenQ[Agy,\;] and 7(v)
| 1 nC 39) The close relationship between the branching generating
“\JIn2 I ERERE ' function Q[Ag,\¢] and the multifractal exponents(v) is

revealed by simple inspection of Eq22) and(43). We find
in other words, with the exception of first order, the that

C: «, are directly proportional t@Kl

------

1
r(v)=—v+ HIH{GXQQ[)\OZ v,\1=0])
IV. SPATIAL CORRELATIONS VS MULTIFRACTALS

A. Multifractals +expQ[Ao=0N;=7])}. (44)

One way to approach multifractals is to count how oftenThis relationship(the univariate version of this relation has
specific valuesy of the singularity strengths occur; this leads already been discussed by Novikpl5] in connection with
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the statistics of generalized multipliers, the so-called break-
down coefficients simplifies further once we consider an
energy-conserving, do/q,-symmetric  splitting function.
Through Eq.(41) we arrive at

1
()= (r=1+ 5QNo=r\=0].  (45)

The two relationg44) and (45) expressr(v) in terms of
Q[Ag,\1]. It appears that is more limited tharQ in that
the latter is defined over the full;—\; plane whiler(v) is
restricted to the axesy=0 or A;=0.

Let us consider the point in more detail. In particular, we
will demonstrate that different energy-conserving splitting
functions may lead to identical multifractal exponents while
their branching generating functions do differ.

Given an energy-conservingy,/q,-symmetric splitting
function  p(do,d1) =p(d1,do) =P(do) 8(do+0d1—2), we
construct a related splitting function by breaking ting/q,
symmetry:

QlAgp),]

FIG. 2. Branching generating functid[A,\ 1], shown in the
range—3<\g,\;=3, for (a) the p model with 3=0.4, (b) the «

~ 2p(go,q1) (0s=gpesl=q;=<2) model with 3=0.4, (c) the energy-conserving SRST cascade model
P(Go,d1) = 0 (0=q;<1<q=<2). (46) with 8=3.2, and (d) the energy-nonconserving SRST cascade
model with3=3.2.
The splitting function p(qg,q;) is almost identical to B
p(qo,ql), their on!y difference being that the smaller spllt— Q[No,\1]= 2: W<(|n qo)™(In Q1)”2>c7\817\22-
ting parametemy is now always drawn for the branching ny,np=0 M-z
into the left subinterval whereas the larger splitting param- (48)

eterq, =2—(p goes into the right subinterval. The one-point . . . .
statistic is not affected by this modification of the splitting YSind EA.(22) the branching generating function can then be

function, since it does not care whether the larger splitting'duely inverted into the splitting function via a two-
parameter goes to the left or right subinterval. Hence thglimensional inverse Laplace transformation,
multifractal exponents are not changed either. With @8)

we get fmdx dy p2e*,2e7Y) e~ (ot x=(Ag+1)y
0

— QMo M) =(Np+Ag+2)In2. (49)
0

- 1 2 -
(v)=—v+ Hln( f dqoda;p(do,d1)(dg+ay)

1 . As a consequence we vie®[\g,A1] as the natural and
_ v PR complete generalization of the multifractal mass exponents
=—p+—Inf2| d +(2 T .
"Tin2 ( fo GoP (o) do+ (2~ do) ]) 7(v) for random multiplicative binary cascade processes.

1 2
=—(v-1)+ ﬁln( fo dqop(qc,)qs) V. EXAMPLES
A. Multiplicative binomial process: The p-model

=7(v). (47 The p-model splitting function given in Eq(l), when
inserted into Eq(22), determines the branching generating
We are hence forced to conclude that a multifractal analyfunction Q[ \o,\1]:
sis does not suffice completely to characterize the dynamics,

i.e., the splitting function, of the underlying multiplicative Q[Ng, M ]=In(3{exgd NoIn(1+ B) +\4In(1— )]
cascade process. This statement holds even more strongly
once we also give up energy conservation in the splitting +exdAoIn(1-B)+NiIn(1+p)]}). (50)

function, with the consequence that properly defined back-
ward moments show deviations from perfect multifractal\We introduce the transformation
scaling. In order to attain the full information, there is no
way to get around spatial correlations in general, and the
cumulant correlation densitieiskl ,,,,, ’ in particular, to ex-

tract the branching momentgin go)" ™(Ing)™). and hence
the branching generating function which leads to

1 1
No=5 (N HN) A=5(0-A), (6D
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1
Cosr( AIn|——

Figure Za) illustrates this branching generating function.  For the first derivative we find

In(1-?)

1
Qronil= BN tin e

1-B

Now we calculate the derivatives of the branching gener-
) ating function with respect to the conjugate variablgsand
(52) Ny, which are needed for the cumulant densitizg

QMo In(1-g%) 1 (1+ ,8) r(l (1 g))
TNy T2 +§'(13 A

For an arbitrary derivative dQ[\g,\;] of ordern;+n,>1, we get the following relationship:

AMT2Q[Ng, ] 9" "2Q[ N, l]‘ oh_\"(oh_}"2 1 nz&nlJran[)\O M
a)\glo'))\TZ - a)\nl+n2 ‘ o (9)\0 (9)\1 _( ) 3)\nl+n2

dQ[Ng,\ ]
INg

_l 2
—Eln(l—ﬁ ). (53

A=0 ‘x:o

(54)

Except for an alternating sign, the two-point branching moméfitsqg)™(In g,)™). are identical to the one-point branching
moments((Inge)"*"2).; this only holds for thep model and not for the other three models associated with the splitting
functions(2)—(4). As a consequence of E(4), we only need to calculate derivatives@f\o,A ;] with respect to\g. We use

the intermediate step of E¢63) and write forn>1,

d"Q[Ng, N ] 1 1+,8 ﬁ” 1 1 1+p8
— = 1 8 ———7) tan > Noln m . (55
INo A=0 Ap=0
|
Since tankx is an odd function irx, i.e., The resultg53), (54), (57), and(58) can now be inserted
into Egs. (30—(33) to determine the cumulant correlation
x3 2 17 62 densitiesC,. ... . =((In€)---(In€,))c. Figure 3 illus-
tanhx=x— =+ —=x°— —=x'+ =—=x°~F
3 ' 15 315 2835 trates the results for the two-point statlst|(‘:sc of second
order, andC - andC, — —, Of fourth order;

«© 22m(22m_1)B ) = Ky= "3v"4_ K=Ky K3~ Ky ] )
= £ 2 SJmemoom-1 (56)  hote again that the third ord&,, ,. .., vanishes. Figures
= (2m)! 142,43

4(a) and 4b) show the second-order and fourth-order cumu-
lants as a function of the ultrametric distances, respectively.

with the Bernoulli numbers,,, all odd derivatives of the Since thep-model splitting function is energy-conserving
branching generating functio@[\o,\;] with respect ta\,  andq,/q;-symmetric we can use relatigd5) to extract the
vanish: multifractal exponents(v) from the branching generating
functionQ[\g,\]. This leads to the well-known restilt,8]
d"Q[Ng,\
% =0 (n=3,57...). (57)
0 \—0 1 1+B8\" [1-B\"
T(V)—ﬁln T) +(T) } (59)

The same conclusion could have also been obtained directly

from Eq. (54): for odd n=3 we haved"Q[\g,\1]/INg|\ =0

=—3"Q[No,N1]/dNT[x—o, but from go/;-symmetry con- It is illustrated in Fig. 5. Via
siderations of the splitting function we expe@fin dg)").

=((In@)"c; hence, d"Q[Xo.\ 11N, —o={(INGx))e=0

An immediate consequence of this result is that, for example, M r(v) 1 3"Q[Ng,\1]

the spatial cumulant densities of third order vanl@ni,cz,‘3 P 1tino Y
=0; see Eq(32). v=0 0 A=0
For even derivatives o[ A,\;] with respect ton, we 1
find from Eqgs.(55) and(56) that =- 5n,1+m<(|n do)™e (60)
"Q[Ng,\1] _(zn_l)Bn{l 1+,3))
NG B n \n 1-8 the derivatives ofr(v) with respect tov are linked to the

r=0 derivatives(53), (57), and (58) of the p-model branching

(n=2,4,6...). (58) generating functior52).
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C k1,k2,k3,k4
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=

0.2 |

K2,k3=x4

FIG. 4. (8 Second-order cumulant densi(y,(l,K2 of the p
model (solid line) and @« model (dashed ling as a function of the
ultrametric distanceal,=D(x; ,x,). Parameter valueg=0.4 and
J=6 were used(b) Two projections of fourth-order cumulant den-
sities for thep model as a function of the ultrametric distarge

CKI

3"Q[Ng,\1]
N

) _(ﬁnQ[)\OJ\l]
B AND
0/ & model 0

FIG. 3. Spatial cumulant densities for th®e model with 8 A—O)p model

=0.4 andJ=6: (a) second orde€,. .., (b) fourth order with three

equal indicesC, — ., x,,«,, @nd(c) fourth order with two pairs of o ] ]

equal indicesC, - ., «,-«, The indicated bin labels are related to This is the reason why, in a multifractal approach, the two

the binary indicesc= (k; - - -k;) by k=1+3]_ k2771,

A=

z L
e L
B. @ model 15—
The symmetrice model is similar to thgg model except i
that it does not conserve energy in a cascade splitting. From L
the splitting function(2), its b.g.f. is found to be 10~
QN0 M]=2(No+Ap)In(1-p?) .
I 1)\ I 1+8 T
+1In4y cos > oln m i
1 1+ ol
+In cos?{?@n(m)“, (62 -

. _ s N

clearly different from the b.g.f52) for the p model. Figure e

2(b) depicts the b.g.f(61). Note that forA =0 or\;=0 the
two expressions(52) and (61) become identical; conse-
quently, the one-point branching moments of #emodel FIG. 5. Multifractal exponents(») of the p model(dash-dotted
are identical to those of the model given in Eqs(53), (57),  line) with 3=0.4 and of the SRST cascade mo¢fell line) with
and (58): B=3.2.



PRE 58 SPATIAL CORRELATIONS OF SINGULARITY ... 563

models look the same asymptotically. To see differences beand (4) do not exist. For the multifractal spectrum to exist
tween them, one must consider two-point branching moever the full v range, however, moments of all orders, both

ments: for thew model they all vanish, positive and negative, must be finite. The absence of finite
negative moments hence implies that it is not possible to
d"Q[Ng, N ] B construct full7(v) andf(«) curves for this specific splitting
=((Indo)"(INgy)" ")c=0, (63)  function. It is thus an example of a well-defined self-similar

INgroN] M : ,
0" A=0 cascade process, which cannot be described fully by the mul-

. ~tifractal formalism.
where 1=n;<n. We hence see that the two-point branching

moments are sensitive to the violation of energy conserva- D. SRST cascade with no energy conservation
tion in the splitting function. As a consequence of E@®) Experimentally, the intermittent structures in the three-
and (63), the cumulant densitie€,, . of thea andp  dimensional energy dissipation field of fully developed tur-
model now look slightly different. Figure (d compares bulence are observed on a one-dimensional cut. Although
C., .x, Of second order as a function of the ultrametric dis-energy is conserved in three dimensions, this is probably not
tance(27) the case in one dimension. For the multiplicative branching
models, this has the consequence that the splitting function
p(do,q4) cannot be expected to conserve energy. In this
spirit, the expressiof¥) represents an untested extrapolation
Thep model is able to describe the multifractal aspects ofof the SRST multiplier distributiorf3), which has been de-
the intermittent fluctuations occurring in the energy dissipaduced from one-dimensional data under the assumption of
tion field in fully developed turbulence. However, due to its energy conservatiof3].
simplicity, the experimental multiplier distributions cannot  |nsertion of the splitting functiort4) into Eq. (22) yields
be reproduced. In Ref13], a modification of thep model  the corresponding branching generating function:
was proposed that accounts for the correct multiplier distri-
butions; we call this modification the SRST cascade model. I'2B) T'(Not+p)
Insertion of its splitting function(3) into Eq. (22) yields I'(\ot28) T'(B)
an analytic expression for its b.g.f.,
In( r'2p) TI'(\+p)
(N +2B8)  T'(B)

C. SRST cascade

Q[)\o,)\l]:()\o+ )\1)|n 2+|n

; (67)

QD\o,M]=In(foldzz\oW—l(l_z)Mw—l)

the explicit derivation is analogous to the one given in Sec.
r'2p) V C. The illustration of Eq.(67) is given in Fig. 2d); it
F( )2 differs from the branching generating functig@5) of the
SRST cascade model with energy conservation. As in the
Since 3=3.2 and\y~0~\4, so that\o+ 8>0 and\;+ 8 p/ «-model comparison, the one-point derivatives
>0, the integral appearing in the first term of the right-hand

+(No+Ap)In2. (64)

side can be identified with the beta functi@(\y+ 8\, "Q[No,N 1] _(9"QlNoA]
+B)=T(Ng+B)T (N +B)/T(Ng+N;+28). This leads to NG _o) sRsT INg _o/ srsT

A= (no EQ A= (EQ)
QAo A1 ]=(N\ g+ Ap)In2 (68)

+In

r'2p) F(No+pB) (A1 +B) of the SRST cascade model witBC) and without(no EQ
F(hotNt2B8) T(B)  T(B) energy conservation are identical, while for the two-point
derivatives we find (£n;<n)

(65)
This result is illustrated in Fig. (2). d"Q[No,\ ] Cox 9"Q[No,\ 4]

From Eq.(65) the spatial cumulant densitieS, a)\nlﬂ)\n Ny SRSt N 19)\“15)\“ N SRsT
can be calculated in the straightforward manner presented in r=07 SoEQ A=077gg)
Sec. IIE. In the lowest even orders, the results are very (69
similar to those obtained for thp model; the odd orders, N
however, are not equal to zero anymore. Consequently, the cumulant densiti€s, . of the

Making use of the relationshi@5), the result(65) trans- SRST-cascade model with and without energy conservation
lates into the following multifractal exponents: are different.

+
(v)=1+ im [(2p) T(v+p) _ (66) VI. CONCLUSIONS
In rv+2B) TI'(B)

With a clever change of variables from energy densities
Note that this expression, which is illustrated in Fig. 5, ise, to the singularity strength&,. or In¢,., we have derived
only defined forv+ 38>0; for v+ B8=<0 the integral in Eq. an analytic expression for the multivariate generating func-
(64) diverges. This is equivalent to the statement that theion of binary multiplicative cascade models. The latter com-
negative moments witlr< — 8 of the splitting functiong3) pletely describes the-point statistics, i.e., the spati@umu-
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lant) correlation densities of arbitrary order The key input Furthermore, the observed statistical dependence of mul-
has been a bivariate branching generating function, which isipliers[13,17,1§ has to be taken into account. Recent simu-
related to the underlying splitting function of the binary mul- lations [19] indicate that this issue is closely linked to the
tiplicative cascade process via a two-dimensional Laplacgestoration of homogeneity. This is in agreement with the
transform. This branching generating function can be underconclusions reached by Nelkin and StolovitzK8] by a
stood as a natural and, for self-similar binary cascade progifferent route, who argue that the experimentally proven
cesses, complete generalization of the multifractal mass exependence of multiplier distributions on the position of the
ponents. While its properties completely fix the spatialgypinterval implies that the multipliers are not statistically
corr_elatlon densities, the multifractal mass exponents do nOFndependent. Since any scheme to restore homogeneity will
Various cascade models, relevant to fully developed turbupecessarily average out subinterval positions in some way;, it

Ien\c/:\;a, Eave bﬁen dltshcutsse_d to tl:]n??;]p'n this _pomti I will likely influence the multipliers’ statistical dependence
€ have shown that, given that the experimentally Meay, o, This remains to be explored in defdif].

surable cumulants in (hﬁi---'ﬁ) aren-fold derivatives of the Finally, the binary structure of the self-similar cascade

branching generating function, the_ latter can in principle beprocesses discussed in this paper may not be appropriate:
reconstructed from the former. With the help of EG#8)  assuming that the physical processes themselves are, indeed,
and (49), the b.g.f. can then be inverted into the splitting gelt.similar, the best self-similar basis for a scaling analysis

function via a two-dimensional inverse Laplace transform. 'n(such as a specific waveleshould be selected by the data
this way, the violation of energy conservation along ONe-jicaf

dimensional cuts through the three-dimensional energy dis- Once these points are clarified, new information can

sipation f'eld. can be mspgcted. . . hopefully be gleaned from the analysis of “fully developed
Before this approach is applied _dwgctly (n_eruIencé turbulence data.” Besides fully developed turbulence, we en-
data, h(_)wever, a number of compllcat_lons will have to bE‘\/isage many and diverse applications of our analytic solution
Qealt with. In order to infer Fhe branching generating func-in other branches of physics. The case of QCD branching
tion from the cumulant densmeﬁkl Kn (to all orders, in processes immediately comes to mind. For the latterathe
principle), a very effective representation of the latter has toandp models have already been used in this context as simu-
be found; here, as in Refsl0,11], a wavelet transformation |ation toy models[20,21. Implications in this and, for ex-
mlght be useful to compress the information contained in th%mp|e, random mu|tip|icative process calculations in |arge_

cumulant densities. . scale structure formation in the univerg22] remain to be
Moreover, there is the problem of nonhomogeneity: as &xplored.

consequence of the hierarchical nature of the cascade evolu-
tion, the theoretical correlation functions are not invariant
with respect to spatial translations, in contradiction to experi-
mental measurements. It remains to be seen whether and in
what way a scheme to restore homogeneity, as, for example, This work was supported in part by the South African
the one used if16], influences or destroys the capability of Foundation for Research Development. P.L. acknowledges
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