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Spatial correlations of singularity strengths in multifractal branching processes
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The n-point statistics of singularity strength variables for multiplicative branching processes is calculated
from an analytic expression of the corresponding multivariate generating function. The key ingredient is a
branching generating function, which can be understood as a natural generalization of the multifractal mass
exponents. Various random multiplicative cascade processes pertaining to fully developed turbulence are
discussed.@S1063-651X~98!09307-6#
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I. INTRODUCTION

Many complex processes occurring in nature are belie
to be organized in a self-similar way: turbulence, large-sc
structure formation in the universe, high-energetic multip
ticle dynamics, and diffusion limited aggregation are bu
few examples showing scaling over a wide range.

A convenient tool to characterize the spatial configu
tions of these processes is the multifractal formalism@1–3#,
which analyses the one-point statistics of singular
strengths under the assumption of multiple local scale inv
ance. Typically, scale invariance is a consequence of s
hierarchical organization of the underlying process. Sin
this process occurs in space, its characterization in term
multifractals can be expected also to yield information ab
spatial correlation functions.

Multivariate correlations, on the other hand, have lo
been known to contain~at least in principle! complete infor-
mation of the underlying random process. Moments and
pecially cumulants are capable, in their multivariate form,
providing this information by means of well-tested statistic
procedures. As in the case of multifractals, cumulants
detect and characterize scale invariance, but unlike
former do not depend on its presence.

The existence of these two sets of tools naturally lead
the question of how they are interrelated: given a self-sim
process, does the multifractal characterization completely
termine the spatial correlation functions and vice versa
does one provide more information than the other?

Some attempts have been made to elucidate the rela
ship between multifractals and correlation functions: tw
point statistics of multifractal measures have been discus
in Refs. @4,5# and applied to turbulence in@6#. It is to be
expected, though, that only the fulln-point statistics of sin-
gularity strengths would provide the equivalent informati
contained in the spatial correlation functions of all orders

It is known that different self-similar processes can le
to identical multifractal exponents@7–9#. This can be under-
stood as a hint that the multifractal characterization is ind
incomplete and that the spatial correlation functions m
contain more information about the underlying process.
shall show that this is indeed the case for several example
PRE 581063-651X/98/58~1!/554~11!/$15.00
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multiplicative branching processes.
The ultimate goal for any analysis, of course, would be

characterization of the multivariate statistics gained from
physical process to a degree of completeness that would
mit precise reconstruction of the ‘‘branching rule’’ that go
erns each step of the self-similar process. As far as theo
concerned, this ultimate goal would be achieved with
specification of a multivariate generating function who
n-fold derivatives would precisely reproduce the correspo
ing experimentally measuredn-variate cumulants.

Clearly, finding this real-life generating function remain
beyond present-day capabilities, for both theoretical and
perimental reasons. It is possible, though, to make prog
towards the ideal by inventing simple branching mod
whose generating functions can be calculated. An appro
to calculate then-point spatial correlations to arbitrary orde
within some of these models was presented in Refs.@10,11#:
there, the multivariate generating function of the spatial c
relations was constructed iteratively from a backward evo
tion equation, leading to a recursive derivation of spatial c
relations. An important further step has been the rec
discovery of a large class of analytic solutions for generat
functions of self-similar multiplicative branching process
@12#.

In this paper, we expand on the latter discovery and
tempt to cast further light on said relationship between m
tifractals and correlations. After a brief explanation of t
mechanics of multiplicative branching processes in Sec
we review in Sec. III the formalism of multivariate correla
tions and derive the above-mentioned analytic solutions
the branching generating functions. While singular
strength variables are already treated in Sec. III, the relat
ship between spatial correlations and multifractals is
plored more fully in Sec. IV, where we also show how t
vaunted splitting function~‘‘branching rule’’! can be recon-
structed via a two-dimensional Laplace transform. The qu
tion of reconstructing this splitting function from data is al
briefly discussed. Four examples of branching proces
treated in Sec. V, drive home the message that multifrac
contain less information than the spatial correlations. We d
cuss our results in more general terms in Sec. VI.
554 © 1998 The American Physical Society
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II. MULTIPLICATIVE BRANCHING PROCESSES

Random multiplicative branching processes, sometim
also called weight-curdling models or simply cascade m
els, can be constructed for any number of branches per s
ting. For simplicity, we concentrate on binary process
generalizations are straightforward.

The branching rule governing a binary cascade is
scribed as follows: a starting energy densitye (0)51, uni-
formly distributed on the unit interval, is split up into tw
daughter densitiese0

(1)5q0e (0) and e1
(1)5q1e (0) living on

adjacent subintervals of length 221. The random weightsq0
andq1, often also called multipliers or splitting paramete
are drawn from a joint probability density~or ‘‘splitting
function’’! p(q0 ,q1). In the next generation, each of the tw
daughter energy densities is itself split up by the sa
branching rule into two granddaughters distributed uniform
over adjacent subintervals of length 222. Generally, energy
densities of thej th generation,e ( j ), are characterized by th
binary indexk5(k1k2•••kj ), with eachk taking on possible
values 0 or 1. Successive repetition of this prescription
eache of the j th generation yields, at the next branchin
2 j 11 energy densities ek1•••kj0

( j 11) 5qk1•••kj0
( j 11) ek1•••kj

( j ) and

ek1•••kj1
( j 11) 5qk1•••kj1

( j 11) ek1•••kj

( j ) , with the multipliers drawn from

a splitting functionp(qk1•••kj0
( j 11) ,qk1•••kj1

( j 11) ), which usually~al-

though not necessarily! is identical withp(q0 ,q1). The pro-
cess is completed afterJ cascade steps.

When the splitting functionp(q0 ,q1) does not depend on
the generationj or branch locationk1•••kj , the above pre-
scription gives rise to a self-similar multiplicative branchin
process, wholly characterized by the choice of splitting fu
tion p. We list four examples for later use. The choice

p~q0 ,q1!5
1

2
$d@q02~11b!#

1d@q02~12b!#%d~q01q122! ~1!

leads to the binomial multiplicative process, also known
the p model@often the equivalent parameterp5(11b)/2 is
used# @8#. The delta functiond(q01q122) ensures that this
process conserves energy at every branching.

The splitting function for the nonenergy conserving cou
terpart of thep model, thea model @9#, is given by

p~q0 ,q1!5
1

4 )
k50

1

$d@qk2~11b!#1d@qk2~12b!#%.

~2!

For the energy dissipation process in fully developed tur
lence, the parametrization

p~q0 ,q1!5
1

2

G~2b!

G~b!2 S q0

2 D b21S q1

2 D b21

d~q01q122!

5
1

22b21

G~2b!

G~b!2
@q0~22q0!#b21d~q01q122!

~3!

with b53.2 has been directly deduced from experime
@13#. The corresponding splitting function not conserving e
ergy is given by
s
-

lit-
;

-

,

e
y

r
,

-

s

-

-

s
-

p~q0 ,q1!5S 1

22b21

G~2b!

G~b!2 D 2

@q0~22q0!#b21

3@q1~22q1!#b21. ~4!

These four splitting functions are shown in Fig. 1.

III. SPATIAL CORRELATIONS

A. Possible variables

For branching processes, the success in extracting us
information or presenting a clear picture depends strongly
the choice of variable. In Refs.@10,11,14#, forward and back-
ward evolution equations for a multivariate generating fun
tion were employed to calculate the correlations directly
terms of the energy densities,^ek1

(J)
•••ekn

(J)&. In the context of

multifractals@1#, on the other hand, another set of variable
the so-called singularity strengthsak

(J) , are in use. The defi-

nition of these strengths, (22J)ek
(J)5(22J)ak

(J)
, means that

they are related to the energy density variablesek
(J) by

ak
~J!512

1

J ln 2
ln ek

~J! , ~5!

so that correlationŝ ak1

(J)
•••akn

(J)& between the singularity

strengthsak
(J) are intimately related to corresponding corr

lations ^(ln ek1

(J))•••(ln ekn

(J))& between the logarithms of th

energy densitiesek
(J) .

We have shown previously@12# that correlations between
the lne lead to a particularly transparent structure for mu
plicative branching processes. Starting with correlations
the logarithms of energy densities, we show below how t
transparent structure arises before translating these re
into the language of multifractals.

FIG. 1. Splitting functionsp(q0 ,q1) of ~a! the p model with
b50.4, ~b! the a model with b50.4, ~c! the energy-conserving
SRST cascade model withb53.2, and ~d! the energy-
nonconserving SRST cascade model withb53.2.
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B. Correlations and generating functions

We consider the spatial correlations

rk1 , . . . ,kn
5^ ln ek1

~J!
••• ln ekn

~J!& ~6!

of order n between the variables lnek
(J) . The bracket^ &

indicates the averaging over all possible configurations. M
mentsrk1 , . . . ,kn

are conveniently calculated from the mult
variate generating function

Z@l~J!#5K expS (
k1 , . . . ,kJ50

1

lk1•••kJ

~J! lnek1•••kJ

~J! D L ~7!

by taking appropriate derivatives with respect to the con
gate variableslk

(J) :

rk1 , . . . ,kn
5

]nZ@l~J!#

]lk1

~J!
•••]lkn

~J!U
l50

. ~8!

The corresponding multivariate cumulant generat
function

K@l~J!#5 ln Z@l~J!# ~9!

yields the cumulant correlation densities in the same way

Ck1 , . . . ,kn
5

]nK@l~J!#

]lk1

~J!
•••]lkn

~J!U
l~J!50

5^ ln ek1

~J!
••• ln ekn

~J!&c ;

~10!

here, we have introduced the indexc ~for ‘‘cumulant’’ ! on
the last bracket to distinguish Eq.~10! from the expression
~6! for the ordinary correlation densities. The lowest fo
orders of cumulant correlation densities are

Ck1
5^ lnek1

&c5^ lnek1
&, ~11!

Ck1 ,k2
5^ lnek1

lnek2
&c5^ lnek1

lnek2
&2^ lnek1

&^ lnek2
&,
~12!

Ck1 ,k2 ,k3
5^ lnek1

lnek2
lnek3

&c

5^ lnek1
lnek2

lnek3
&2(

$3%
^ lnek1

lnek2
&^ lnek3

&

12^ lnek1
&^ lnek2

&^ lnek3
&, ~13!
-

-

g

ia

r

Ck1 ,k2 ,k3 ,k4
5^ lnek1

lnek2
lnek3

lnek4
&c

5^ lnek1
lnek2

lnek3
lnek4

&

2(
$4%

^ lnek1
lnek2

lnek3
&^ lnek4

&

2(
$3%

^ lnek1
lnek2

&^ lnek3
lnek4

&

12(
$6%

^ lnek1
lnek2

&^ lnek3
&^ lnek4

&

26^ lnek1
&^ lnek2

&^ lnek3
&^ lnek4

&, ~14!

with brackets$ % indicating summation over permutations
indices.

C. Construction of the cumulant generating function
„first approach…

The derivation of the cumulant generating function d
pends crucially on a rearrangement of terms in the s
(k1 , . . . ,kJ

lk1•••kJ

(J) lnek1•••kJ

(J) entering the generating function i

Eq. ~7!. The trick lies in recognizing that the cascade p
scription of Sec. II implies that the energy density in theJth
generation is the product of all the splitting parameters in
ancestry,

ek
~J!5ek1•••kJ

~J! 5qk1

~1!qk1k2

~2!
•••qk1•••kJ

~J! , ~15!

so that its logarithm is additive in the multipliers’ logarithm

lnek1•••kJ

~J! 5(
j 51

J

ln qk1•••kj

~ j ! . ~16!

Inserting this into the sum in the exponential of the gene
ing function in Eq.~7! and defining

lk1•••kj

~ j ! [ (
kj 11 , . . . ,kJ

lk1•••kjkj 11•••kJ

~J! , ~17!

we find, after rearrangement and judicious regrouping
terms, that
(
k1 , . . . ,kJ

lk1•••kJ

~J! lnek1•••kJ

~J! 5(
j 51

J

(
k1 , . . . ,kj

lk1•••kj

~ j ! ln qk1•••kj

~ j !

5(
j 51

J

(
k1 , . . . ,kj 21

~lk1•••kj 210
~ j ! ln qk1•••kj 210

~ j ! 1lk1•••kj 211
~ j ! ln qk1•••kj 211

~ j ! !. ~18!

This can now be utilized to rewrite the configuration average^O(e (J))& of any functionO in terms of the splitting
parameters as follows. We start with the definition

^O~e~J!!&5E d~ lne0•••0
~J! !•••d~ lne1•••1

~J! !p~ lne0•••0
~J! , . . . , lne1•••1

~J! !O~e~J!!, ~19!



n
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wherep(lne0•••0
(J) , . . . , lne1•••1

(J) ) is the joint probability of finding a given logarithmic energy density lne0•••0
(J) in bin (0•••0), a

given lne0•••1
(J) in the next bin, etc. Since each energy densityek

(J) is completely determined by itsJ ancestral splitting
parameters, the multivariate probability densityp(lne0•••0

(J) , . . . , lne1•••1
(J) ) can be constructed from the splitting functio

p(q0 ,q1) by using Eq.~16!:

p~ lne0•••0
~J! , . . . , lne1•••1

~J! !5E S )
j 51

J

)
k1 , . . . ,kj 2150

1

dqk1•••kj 210
~ j ! dqk1•••kj 211

~ j ! p~qk1•••kj 210
~ j ! ,qk1•••kj 211

~ j ! !D
3F )

k1 , . . . ,kJ50

1

dS lnek1•••kJ

~J! 2(
j 51

J

ln qk1•••kj

~ j ! D G . ~20!

Inserting Eqs.~18!, ~19!, and~20! into Eq. ~9!, we find that the cumulant generating function becomes

K@l0•••0
~J! , . . . ,l1•••1

~J! #5 lnF E S )
k1 , . . . ,kJ50

1

d~ lnek1•••kJ

~J! !D p~ lne0•••0
~J! , . . . , lne1•••1

~J! !expS (
k1 , . . . ,kJ50

1

lk1•••kJ

~J! lnek1•••kJ

~J! D G
5(

j 51

J

(
k1 , . . . ,kj 2150

1

Q@lk1•••kj 210
~ j ! ,lk1•••kj 211

~ j ! #, ~21!

where

Q@l0 ,l1#5 lnS E dq0 dq1 p~q0 ,q1!exp~l0ln q01l1ln q1! D5 ln^exp~l0ln q01l1ln q1!& ~22!
io
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is the local branching generating function~b.g.f.!. Equations
~21! and ~22! represent the long-sought analytic express
for multiplicative cascades: they show that the cumulant g
erating function of the entire cascade can be written as
sum of all branching generating functionsQ, one for every
branching. In most cases, the twofold integrals~22! can be
solved analytically or parametrically to yield a complete an
lytic solution for K and thereby for all cumulants.

The scope and limitations of the solution~21! are as fol-
lows. Clearly, the generating function in terms of lne is ap-
plicable to any functional form of the splitting function o
b.g.f. It does not depend on the number of branches eit
trivariate or even higher-variate splitting functions can
implemented. Due to the additive nature of the b.g.f.’s,
splitting functions can differ from generation to generati
and even from branch to branch. The only~and important!
precondition for the applicability of Eq.~21! is that the split-
n
-
e

-

r:

e

ting variables of every branching must be independent
those of the other branchings and generations.

D. Construction of the cumulant generating function
„second approach…

The cumulant generating function can also be construc
from a forward evolution equation. In Ref.@14#, the forward
evolution equation for the generating function was derived
terms of energy densitiesek1•••kj

( j ) . In terms of the lnek1•••kj

(j) ,

the cumulant generating function afterj cascade steps
K ( j )@l ( j )#, can be expressed in terms ofK ( j 21)@l ( j 21)# as
follows. At each of the 2j 21 independent branchings, Eq
~16! relates the daughter energy densities to their parent

lnek1•••kj

~ j ! 5 lnek1•••kj 21

~ j 21! 1 ln qk1•••kj

~ j ! ~kj50,1!. ~23!

In analogy to Eq.~18!,
expS (
k1 , . . . ,kj 50

1

lk1•••kj

~ j ! lnek1•••kj

~ j ! D 5 )
k1 , . . . ,kj 2150

1

exp~lk1•••kj 210
~ j ! lnek1•••kj 210

~ j ! 1lk1•••kj 211
~ j ! lnek1•••kj 211

~ j ! !

5 )
k1 , . . . ,kj 2150

1

exp@~lk1•••kj 210
~ j ! 1lk1•••kj 211

~ j ! !lnek1•••kj 21

~ j 21! 1lk1•••kj 210
~ j ! ln qk1•••kj 210

~ j !

1lk1•••kj 211
~ j ! ln qk1•••kj 211

~ j ! # ~24!

and assigning, as in Eq.~17!,

lk1•••kj 210
~ j ! 1lk1•••kj 211

~ j ! 5lk1•••kj 21

~ j 21! , ~25!

we arrive at
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K ~ j !@l~ j !#5K ~ j 21!@l~ j 21!#1 (
k1 , . . . ,kj 2150

1

lnS E dqk1•••kj 210
~ j ! dqk1•••kj 211

~ j ! p~qk1•••kj 210
~ j ! ,qk1•••kj 211

~ j ! !

3exp~lk1•••kj 210
~ j ! ln qk1•••kj 210

~ j ! 1lk1•••kj 211
~ j ! ln qk1•••kj 211

~ j ! ! D
5K ~ j 21!@l~ j 21!#1 (

k1 , . . . ,kj 2150

1

Q@lk1•••kj 210
~ j ! ,lk1•••kj 211

~ j ! #. ~26!
o
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This forward evolution equation can be iterated fromj 5J
down to j 50, where we arrive at K ( j 50)@l (0)#
5 ln(Z(0)@l(0)#)50; the outcome of this iteration is identical t
the solution~21!. Similarly, a backward evolution equatio
for the cumulant generating functions can also be used
achieve identical results; we leave this as an exercise to
reader.

E. Cumulant correlation densities

Having found an analytic expression of the multivaria
generating functionK@l (J)#, it is now straightforward to cal-
culate the cumulant correlation densities~11!–~14! between
the lnek

(J) variables via Eq.~10!. In order to give compac
expressions, we define an ultrametric distance between
Assume the two bins are together for the firstj steps of the
binary cascade before splitting at the (j 11)th generation,
k15(k1•••kjkj 11•••kJ) and k25(k1•••kjkj 118 •••kJ8),
whereki5ki8 for all 1< i< j and kj 11Þkj 118 . Then the ul-
trametric distance between them is

d25D~k1 ,k2!5J2 j . ~27!

For n bins, the generalized ultrametric distance is

dn5 max
1< i , j <n

D~ki ,kj !. ~28!

In the following, we assume that the same functional fo
for the b.g.f. is used at all branchings. We also assume
splitting functionp(q0 ,q1) to be symmetric under exchang
of the splitting parameters,p(q0 ,q1)5p(q1 ,q0); the four
splitting functions given in Eqs.~1!–~4! fall into this cat-
egory. In consequence, the branching generating func
Q@l0 ,l1#5Q@l1 ,l0# is also symmetric, so that also

]n11n2Q@l0 ,l1#

]l0
n1]l1

n2 U
l50

5
]n11n2Q@l0 ,l1#

]l0
n2]l1

n1 U
l50

. ~29!

This relation results in compact expressions for the cumu
correlation densitiesCk1 , . . . ,kn

. Inserting Eq.~21! into Eq.
~10! and taking into account Eq.~17!, the cumulant correla-
tion density of first order is found to be

Ck1
5JS ]Q@l0 ,l1#

]l0
U

l50
D . ~30!

For second order we get, with Eq.~27!,
to
he

s.

e

n

nt

Ck1 ,k2
5~J2d2!S ]2Q@l0 ,l1#

]l0
2 U

l50
D

1~12dd2,0!S ]2Q@l0 ,l1#

]l0]l1
U

l50
D , ~31!

while with the generalization~28!, the third-order cumulant
density becomes

Ck1 ,k2 ,k3
5~J2d3!S ]3Q@l0 ,l1#

]l0
3 U

l50
D

1~12dd3,0!S ]3Q@l0 ,l1#

]l0
2]l1

U
l50

D . ~32!

In the case of fourth order, two cases have to be dis
guished, depending on whether the first splitting of the fo
bins k1 , . . . ,k4 goes into three and one, say (k1k2k3uk4)
with d3(k1 ,k2 ,k3),d4 and n153,n251, or into two and
two, say (k1k2uk3k4) with d2(k1 ,k2),d4, d2(k3 ,k4),d4,
andn152,n252:

Ck1 ,k2 ,k3 ,k4
5~J2d4!S ]4Q@l0 ,l1#

]l0
4 U

l50
D

1~12dd4,0!S ]4Q@l0 ,l1#

]l0
n1]l1

n2 U
l50

D . ~33!

Even under the stated assumptions, the expressions~30!–
~33! are still very general for self-similar binary multiplica
tive cascade models. The one and only input is the splitt
function p(q0 ,q1) determining the branching generatin
function Q@l0 ,l1#. The cumulant correlation densities fo
the splitting functions~1!–~4! will be discussed in more de
tail in Sec. V.

It is clear from Eqs.~30!–~33! that the derivatives of the
branching generating function completely fix the spatial c
mulant correlation densities. Using the definition~22! these
derivatives can be expressed in terms of generic branc
moments:

]n11n2Q@l0 ,l1#

]l0
n1]l1

n2 U
l50

5^~ ln q0!n1~ ln q1!n2&c . ~34!

In the lowest three orders, they read explicitly
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^ ln q0&c5^ ln q0&,

^~ ln q0!2&c5^~ ln q0!2&2^ ln q0&
2,

^~ ln q0!~ ln q1!&c5^~ ln q0!~ ln q1!&2^ ln q0&^ ln q1&,

^~ ln q0!3&c5^~ ln q0!3&23^~ ln q0!2&^ ln q0&12^ ln q0&
3,

^~ ln q0!2~ ln q1!&c5^~ ln q0!2~ ln q1!&

22^~ ln q0!~ ln q1!&^ ln q0&

2^~ ln q0!2&^ ln q1&12^ ln q0&
2^ ln q1&.

~35!

F. Link to singularity strength variables

We have defined the cumulant correlation densit
Ck1 , . . . ,kn

5^ lnek1

(J)
••• lnekn

(J)&c in terms of the lnek
(J) variables.

With the help of Eq.~5!, they can be transformed into cumu
lant correlation densitiesCk1 , . . . ,kn

a 5^ak1

(J)
•••akn

(J)&c between

the singularity strength variablesak
(J) . We find for the cor-

responding generating function

Ka@l~J!#5 lnK expS (
k1 , . . . ,kJ50

1

lk1•••kJ

~J! ak1•••kJ

~J! D L
5 lnK expF (

k1 , . . . ,kJ50

1

lk1•••kJ

~J!

3S 12
1

J ln 2
lnek1•••kJ

~J! D G L
5 (

k1 , . . . ,kJ50

1

lk1•••kJ

~J! 1KF ~21!

J ln 2
l~J!G . ~36!

Taking derivatives, the relations between the cumulant d
sities are found to be, for first order,

Ck1

a 5^ak1

~J!&c512
1

J ln 2
^ lnek1

~J!&c512
1

J ln 2
Ck1

, ~37!

and, forn>2,

Ck1 , . . . ,kn

a 5^ak1

~J!
•••akn

~J!&c

5S 21

J ln 2D n

^ lnek1

~J!
••• lnekn

~J!&c

5S 21

J ln 2D n

Ck1 , . . . ,kn
, ~38!

in other words, with the exception of first order, th
Ck1 , . . . ,kn

a are directly proportional toCk1 , . . . ,kn
.

IV. SPATIAL CORRELATIONS VS MULTIFRACTALS

A. Multifractals

One way to approach multifractals is to count how oft
specific valuesa of the singularity strengths occur; this lea
s

n-

to the f (a) spectrum@1#. The latter is related by a Legendr
transformation to a sequence of mass exponentst(n), which
are defined by the moment scaling behavior of bin energ
Ek1•••kj

( j ) :

M n~ j !5K (
k1 , . . . ,kj 50

1

~Ek1•••kj

~ j ! !nL
5K (

k1 , . . . ,kj 50

1 S ek1•••kj

~ j !

2 j D nL
5~22 j !2t~n!. ~39!

In order to avoid confusion we have writtent(n) instead of
the more familiar notationt(q). Since the bin energies ar

related to the singularity strengths byEk
( j )5(22 j )ak

( j )
, these

moments are to be understood as scale-dependent mea
for the one-point statistics of the singularity strengths.

We first derive the expression for the exponentst(n) for
the special case of a symmetric splitting functionp(q0 ,q1)
5p(q1 ,q0) of a binary multiplicative cascade process th
conserves energy.@Note that for energy nonconserving spli
ting functions, as for example those given in Eqs.~2! and~4!,
the multifractal exponents cannot be defined unambiguou
see Ref.@11#.# Then we can use Eq.~15! and the statistical
independence of splitting parameters to deduce

^~ek1•••kj

~ j ! !n&5^qk1

n &^qk1k2

n &•••^qk1•••kj

n &5^q0
n& j . ~40!

Insertion into Eq.~39! yields

t~n!5
1

ln 2
lnS ^q0

n&

2n21D 52~n21!1
ln^q0

n&
ln 2

. ~41!

For a q0 /q1-asymmetric, energy-conserving splitting fun
tion we have to replace the sum appearing in Eq.~39! by

(
k1 , . . . ,kj 50

1

^~Ek1•••kj

~ j ! !n&5
1

2n j
@^q0

n&1^q1
n&# j , ~42!

which gives rise to

t~n!5
1

ln 2
lnS ^q0

n&1^q1
n&

2n D 52n1
ln~^q0

n&1^q1
n&!

ln 2
.

~43!

B. Relationship betweenQ†l0 ,l1‡ and t„n…

The close relationship between the branching genera
function Q@l0 ,l1# and the multifractal exponentst(n) is
revealed by simple inspection of Eqs.~22! and~43!. We find
that

t~n!52n1
1

ln 2
ln$exp~Q@l05n,l150# !

1exp~Q@l050,l15n#!%. ~44!

This relationship~the univariate version of this relation ha
already been discussed by Novikov@15# in connection with
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the statistics of generalized multipliers, the so-called bre
down coefficients! simplifies further once we consider a
energy-conserving, q0 /q1-symmetric splitting function.
Through Eq.~41! we arrive at

t~n!52~n21!1
1

ln 2
Q@l05n,l150#. ~45!

The two relations~44! and ~45! expresst(n) in terms of
Q@l0 ,l1#. It appears thatt is more limited thanQ in that
the latter is defined over the fulll0–l1 plane whilet(n) is
restricted to the axesl050 or l150.

Let us consider the point in more detail. In particular, w
will demonstrate that different energy-conserving splitti
functions may lead to identical multifractal exponents wh
their branching generating functions do differ.

Given an energy-conserving,q0 /q1-symmetric splitting
function p(q0 ,q1)5p(q1 ,q0)5p(q0)d(q01q122), we
construct a related splitting function by breaking theq0 /q1
symmetry:

p̃~q0 ,q1!5H 2p~q0 ,q1! ~0<q0<1<q1<2!

0 ~0<q1<1<q0<2!.
~46!

The splitting function p̃(q0 ,q1) is almost identical to
p(q0 ,q1), their only difference being that the smaller spl
ting parameterq0 is now always drawn for the branchin
into the left subinterval whereas the larger splitting para
eterq1522q0 goes into the right subinterval. The one-poi
statistic is not affected by this modification of the splittin
function, since it does not care whether the larger splitt
parameter goes to the left or right subinterval. Hence
multifractal exponents are not changed either. With Eq.~43!
we get

t̃~n!52n1
1

ln 2
lnS E

0

2

dq0dq1p̃~q0 ,q1!~q0
n1q1

n! D
52n1

1

ln 2
lnS 2E

0

1

dq0p~q0!@q0
n1~22q0!n# D

52~n21!1
1

ln 2
lnS E

0

2

dq0p~q0!q0
nD

5t~n!. ~47!

We are hence forced to conclude that a multifractal ana
sis does not suffice completely to characterize the dynam
i.e., the splitting function, of the underlying multiplicativ
cascade process. This statement holds even more stro
once we also give up energy conservation in the splitt
function, with the consequence that properly defined ba
ward moments show deviations from perfect multifrac
scaling. In order to attain the full information, there is n
way to get around spatial correlations in general, and
cumulant correlation densitiesCk1 , . . . ,kn

in particular, to ex-

tract the branching moments^(ln q0)
n2m(ln q1)

m&c and hence
the branching generating function
k-

-

g
e

-
s,

gly
g
k-
l

e

Q@l0 ,l1#5 (
n1 ,n250

`
1

n1!n2!
^~ ln q0!n1~ ln q1!n2&cl0

n1l1
n2 .

~48!

Using Eq.~22! the branching generating function can then
uniquely inverted into the splitting function via a two
dimensional inverse Laplace transformation,

E
0

`

dx dy p~2e2x,2e2y! e2~l011!x2~l111!y

5eQ[l0 ,l1] 2~l01l112!ln 2. ~49!

As a consequence we viewQ@l0 ,l1# as the natural and
complete generalization of the multifractal mass expone
t(n) for random multiplicative binary cascade processes

V. EXAMPLES

A. Multiplicative binomial process: The p-model

The p-model splitting function given in Eq.~1!, when
inserted into Eq.~22!, determines the branching generatin
function Q@l0 ,l1#:

Q@l0 ,l1#5 ln~ 1
2 $exp@l0ln~11b!1l1ln~12b!#

1exp@l0ln~12b!1l1ln~11b!#%!. ~50!

We introduce the transformation

l05
1

2
~l11l2!, l15

1

2
~l12l2!, ~51!

which leads to

FIG. 2. Branching generating functionQ@l0 ,l1#, shown in the
range23<l0 ,l1<3, for ~a! the p model withb50.4, ~b! the a
model withb50.4, ~c! the energy-conserving SRST cascade mo
with b53.2, and ~d! the energy-nonconserving SRST casca
model withb53.2.
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Q@l0 ,l1#5
ln~12b2!

2
l11 lnS coshX1

2
l2lnS 11b

12b D CD .

~52!

Figure 2~a! illustrates this branching generating function.
c

pl
Now we calculate the derivatives of the branching gen

ating function with respect to the conjugate variablesl0 and

l1, which are needed for the cumulant densitiesCk1 , . . . ,kn
.

For the first derivative we find
g
tting
]Q@l0 ,l1#

]l0
U

l50

5
]Q@l0 ,l1#

]l1
U

l50

5
ln~12b2!

2
1

1

2
lnS 11b

12b D tanhX1
2

l2lnS 11b

12b D CU
l50

5
1

2
ln~12b2!. ~53!

For an arbitrary derivative ofQ@l0 ,l1# of ordern11n2.1, we get the following relationship:

]n11n2Q@l0 ,l1#

]l0
n1]l1

n2 U
l50

5
]n11n2Q@l0 ,l1#

]l
2

n11n2 U
l50

S ]l2

]l0
D n1S ]l2

]l1
D n2

5~21!n2
]n11n2Q@l0 ,l1#

]l0
n11n2 U

l50

. ~54!

Except for an alternating sign, the two-point branching moments^(ln q0)
n1(ln q1)

n2&c are identical to the one-point branchin
moments^(lnq0)

n11n2&c ; this only holds for thep model and not for the other three models associated with the spli
functions~2!–~4!. As a consequence of Eq.~54!, we only need to calculate derivatives ofQ@l0 ,l1# with respect tol0. We use
the intermediate step of Eq.~53! and write forn.1,

]nQ@l0 ,l1#

]l0
n U

l50

5
1

2
lnS 11b

12b D X ]n21

]l0
n21H tanhF1

2
l0lnS 11b

12b D G J CU
l050

. ~55!
n

u-
ely.
g

g

Since tanhx is an odd function inx, i.e.,

tanhx5x2
x3

3
1

2

15
x52

17

315
x71

62

2835
x97 . . .

5 (
m51

`
22m~22m21!B2m

~2m!!
x2m21 ~56!

with the Bernoulli numbersB2m , all odd derivatives of the
branching generating functionQ@l0 ,l1# with respect tol0
vanish:

]nQ@l0 ,l1#

]l0
n U

l50

50 ~n53,5,7, . . . !. ~57!

The same conclusion could have also been obtained dire
from Eq. ~54!: for odd n>3 we have]nQ@l0 ,l1#/]l0

nul50

52]nQ@l0 ,l1#/]l1
nul50, but from q0/q1-symmetry con-

siderations of the splitting function we expect^(ln q0)
n&c

5^(ln q1)
n&c ; hence, ]nQ@l0 ,l1#/]l0

nul505^(ln q0)
n&c50.

An immediate consequence of this result is that, for exam
the spatial cumulant densities of third order vanish,Ck1k2k3

50; see Eq.~32!.
For even derivatives ofQ@l0 ,l1# with respect tol0 we

find from Eqs.~55! and ~56! that

]nQ@l0 ,l1#

]l0
n U

l50

5
~2n21!Bn

n
XlnS 11b

12b D Cn

~n52,4,6, . . . !. ~58!
tly

e,

The results~53!, ~54!, ~57!, and~58! can now be inserted
into Eqs. ~30!–~33! to determine the cumulant correlatio
densitiesCk1 , . . . ,kn

5^(lnek1
)•••(lnekn

)&c . Figure 3 illus-

trates the results for the two-point statistics:Ck1 ,k2
of second

order, andCk15k25k3 ,k4
and Ck15k2 ,k35k4

of fourth order;

note again that the third orderCk1 ,k2 ,k3
, vanishes. Figures

4~a! and 4~b! show the second-order and fourth-order cum
lants as a function of the ultrametric distances, respectiv

Since thep-model splitting function is energy-conservin
andq0 /q1-symmetric we can use relation~45! to extract the
multifractal exponentst(n) from the branching generatin
functionQ@l0 ,l1#. This leads to the well-known result@1,8#

t~n!5
1

ln 2
lnF S 11b

2 D n

1S 12b

2 D nG . ~59!

It is illustrated in Fig. 5. Via

]nt~n!

]nn U
n50

52dn,11
1

ln 2

]nQ@l0 ,l1#

]l0
n U

l50

52dn,11
1

ln 2
^~ ln q0!n&c ~60!

the derivatives oft(n) with respect ton are linked to the
derivatives~53!, ~57!, and ~58! of the p-model branching
generating function~52!.
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B. a model

The symmetrica model is similar to thep model except
that it does not conserve energy in a cascade splitting. F
the splitting function~2!, its b.g.f. is found to be

Q@l0 ,l1#5 1
2 ~l01l1!ln~12b2!

1 lnH coshF1

2
l0lnS 11b

12b D G J
1 lnH coshF1

2
l1lnS 11b

12b D G J , ~61!

clearly different from the b.g.f.~52! for the p model. Figure
2~b! depicts the b.g.f.~61!. Note that forl050 or l150 the
two expressions~52! and ~61! become identical; conse
quently, the one-point branching moments of thea model
are identical to those of thep model given in Eqs.~53!, ~57!,
and ~58!:

FIG. 3. Spatial cumulant densities for thep model with b
50.4 andJ56: ~a! second orderCk1 ,k2

, ~b! fourth order with three
equal indices,Ck15k25k3 ,k4

, and~c! fourth order with two pairs of
equal indices,Ck15k2 ,k35k4

. The indicated bin labels are related
the binary indicesk5(k1•••kJ) by k511( j 51

J kj2
J2 j .
m

S ]nQ@l0 ,l1#

]l0
n U

l50
D

a model

5S ]nQ@l0 ,l1#

]l0
n U

l50
D

p model

.

~62!

This is the reason why, in a multifractal approach, the t

FIG. 4. ~a! Second-order cumulant densityCk1 ,k2
of the p

model ~solid line! and a model ~dashed line! as a function of the
ultrametric distanced25D(k1 ,k2). Parameter valuesb50.4 and
J56 were used.~b! Two projections of fourth-order cumulant den
sities for thep model as a function of the ultrametric distanced4.

FIG. 5. Multifractal exponentst(n) of thep model~dash-dotted
line! with b50.4 and of the SRST cascade model~full line! with
b53.2.
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models look the same asymptotically. To see differences
tween them, one must consider two-point branching m
ments: for thea model they all vanish,

]nQ@l0 ,l1#

]l0
n1]l1

n2n1 U
l50

5^~ ln q0!n1~ ln q1!n2n1&c50, ~63!

where 1<n1,n. We hence see that the two-point branchi
moments are sensitive to the violation of energy conse
tion in the splitting function. As a consequence of Eqs.~62!
and ~63!, the cumulant densitiesCk1 , . . . ,kn

of the a and p

model now look slightly different. Figure 4~a! compares
Ck1 ,k2

of second order as a function of the ultrametric d
tance~27!.

C. SRST cascade

Thep model is able to describe the multifractal aspects
the intermittent fluctuations occurring in the energy dissi
tion field in fully developed turbulence. However, due to
simplicity, the experimental multiplier distributions cann
be reproduced. In Ref.@13#, a modification of thep model
was proposed that accounts for the correct multiplier dis
butions; we call this modification the SRST cascade mod

Insertion of its splitting function~3! into Eq. ~22! yields
an analytic expression for its b.g.f.,

Q@l0 ,l1#5 lnS E
0

1

dzzl01b21~12z!l11b21D
1 lnFG~2b!

G~b!2 G1~l01l1!ln 2. ~64!

Sinceb53.2 andl0'0'l1, so thatl01b.0 andl11b
.0, the integral appearing in the first term of the right-ha
side can be identified with the beta functionB(l01b,l1
1b)5G(l01b)G(l11b)/G(l01l112b). This leads to

Q@l0 ,l1#5~l01l1!ln 2

1 lnS G~2b!

G~l01l112b!

G~l01b!

G~b!

G~l11b!

G~b! D .

~65!

This result is illustrated in Fig. 2~c!.
From Eq. ~65! the spatial cumulant densitiesCk1 , . . . ,kn

can be calculated in the straightforward manner presente
Sec. III E. In the lowest even orders, the results are v
similar to those obtained for thep model; the odd orders
however, are not equal to zero anymore.

Making use of the relationship~45!, the result~65! trans-
lates into the following multifractal exponents:

t~n!511
1

ln 2
lnS G~2b!

G~n12b!

G~n1b!

G~b! D . ~66!

Note that this expression, which is illustrated in Fig. 5,
only defined forn1b.0; for n1b<0 the integral in Eq.
~64! diverges. This is equivalent to the statement that
negative moments withn<2b of the splitting functions~3!
e-
-

a-

-

f
-

i-
l.

d

in
y

e

and ~4! do not exist. For the multifractal spectrum to exi
over the fulln range, however, moments of all orders, bo
positive and negative, must be finite. The absence of fi
negative moments hence implies that it is not possible
construct fullt(n) and f (a) curves for this specific splitting
function. It is thus an example of a well-defined self-simil
cascade process, which cannot be described fully by the m
tifractal formalism.

D. SRST cascade with no energy conservation

Experimentally, the intermittent structures in the thre
dimensional energy dissipation field of fully developed tu
bulence are observed on a one-dimensional cut. Altho
energy is conserved in three dimensions, this is probably
the case in one dimension. For the multiplicative branch
models, this has the consequence that the splitting func
p(q0 ,q1) cannot be expected to conserve energy. In t
spirit, the expression~4! represents an untested extrapolati
of the SRST multiplier distribution~3!, which has been de
duced from one-dimensional data under the assumption
energy conservation@13#.

Insertion of the splitting function~4! into Eq. ~22! yields
the corresponding branching generating function:

Q@l0 ,l1#5~l01l1!ln 21 lnS G~2b!

G~l012b!

G~l01b!

G~b! D
1 lnS G~2b!

G~l112b!

G~l11b!

G~b! D ; ~67!

the explicit derivation is analogous to the one given in S
V C. The illustration of Eq.~67! is given in Fig. 2~d!; it
differs from the branching generating function~65! of the
SRST cascade model with energy conservation. As in
p/a-model comparison, the one-point derivatives

S ]nQ@l0 ,l1#

]l0
n U

l50
D

SRST
~no EC!

5S ]nQ@l0 ,l1#

]l0
n U

l50
D

SRST
~EC!

~68!

of the SRST cascade model with~EC! and without~no EC!
energy conservation are identical, while for the two-po
derivatives we find (1<n1,n)

S ]nQ@l0 ,l1#

]l0
n1]l1

n2n1 U
l50

D
SRST

~no EC!

50ÞS ]nQ@l0 ,l1#

]l0
n1]l1

n2n1 U
l50

D
SRST
~EC!

.

~69!

Consequently, the cumulant densitiesCk1 , . . . ,kn
of the

SRST-cascade model with and without energy conserva
are different.

VI. CONCLUSIONS

With a clever change of variables from energy densit
ek to the singularity strengthsak or lnek , we have derived
an analytic expression for the multivariate generating fu
tion of binary multiplicative cascade models. The latter co
pletely describes then-point statistics, i.e., the spatial~cumu-
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lant! correlation densities of arbitrary ordern. The key input
has been a bivariate branching generating function, whic
related to the underlying splitting function of the binary mu
tiplicative cascade process via a two-dimensional Lapl
transform. This branching generating function can be und
stood as a natural and, for self-similar binary cascade p
cesses, complete generalization of the multifractal mass
ponents. While its properties completely fix the spat
correlation densities, the multifractal mass exponents do
Various cascade models, relevant to fully developed tur
lence, have been discussed to underpin this point.

We have shown that, given that the experimentally m
surable cumulants in (lnek1•••kJ

(J) ) aren-fold derivatives of the

branching generating function, the latter can in principle
reconstructed from the former. With the help of Eqs.~48!
and ~49!, the b.g.f. can then be inverted into the splittin
function via a two-dimensional inverse Laplace transform
this way, the violation of energy conservation along on
dimensional cuts through the three-dimensional energy
sipation field can be inspected.

Before this approach is applied directly to~turbulence!
data, however, a number of complications will have to
dealt with. In order to infer the branching generating fun
tion from the cumulant densitiesCk1 , . . . ,kn

~to all orders, in
principle!, a very effective representation of the latter has
be found; here, as in Refs.@10,11#, a wavelet transformation
might be useful to compress the information contained in
cumulant densities.

Moreover, there is the problem of nonhomogeneity: a
consequence of the hierarchical nature of the cascade e
tion, the theoretical correlation functions are not invaria
with respect to spatial translations, in contradiction to exp
mental measurements. It remains to be seen whether an
what way a scheme to restore homogeneity, as, for exam
the one used in@16#, influences or destroys the capability
inferring the branching generating function.
-
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Furthermore, the observed statistical dependence of m
tipliers @13,17,18# has to be taken into account. Recent sim
lations @19# indicate that this issue is closely linked to th
restoration of homogeneity. This is in agreement with t
conclusions reached by Nelkin and Stolovitzky@18# by a
different route, who argue that the experimentally prov
dependence of multiplier distributions on the position of t
subinterval implies that the multipliers are not statistica
independent. Since any scheme to restore homogeneity
necessarily average out subinterval positions in some wa
will likely influence the multipliers’ statistical dependenc
also. This remains to be explored in detail@19#.

Finally, the binary structure of the self-similar casca
processes discussed in this paper may not be appropr
assuming that the physical processes themselves are, in
self-similar, the best self-similar basis for a scaling analy
~such as a specific wavelet! should be selected by the da
itself.

Once these points are clarified, new information c
hopefully be gleaned from the analysis of ‘‘fully develope
turbulence data.’’ Besides fully developed turbulence, we
visage many and diverse applications of our analytic solut
in other branches of physics. The case of QCD branch
processes immediately comes to mind. For the latter, tha
andp models have already been used in this context as si
lation toy models@20,21#. Implications in this and, for ex-
ample, random multiplicative process calculations in larg
scale structure formation in the universe@22# remain to be
explored.
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